
Excluded Volume Effect on the Diffusion-Influenced Bimolecular Reactions

Younjoon Jung and Sangyoub Lee*
Department of Chemistry and Center for Molecular Catalysis, Seoul National UniVersity,
Seoul 151-742, South Korea

ReceiVed: February 19, 1997; In Final Form: May 13, 1997X

By applying the reduced distribution function approach to the diffusion-influenced bimolecular reaction, we
evaluate the effect of excluded volume between nonreacting like molecules on the transient kinetics. It is
found that concentrations of reactant molecules decay more rapidly with the excluded volume taken into
account than without it. Comparison with previous works dealing with the excluded volume effect shows a
qualitative agreement, but it appears that previous works underestimate the excluded volume effect.

I. Introduction

Since the pioneering work of von Smoluchowski1 many
theoretical approaches were proposed to treat the kinetics of
diffusion-influenced bimolecular reactions in solution.2-18 Of
the various approaches, those based on a hierarchy of evolution
equations for the reduced distribution functions of reactant
molecules are particularly attractive, since they provide a
systematic theoretical framework for dealing with the diffusion-
influenced reaction involved in a complicated reaction mech-
anism.8-18

It was Waite8 and Monchicket al.9 who initiated this line of
theories. Wilemski and Fixman10 improved the formalism
significantly by introducing a sink function in the coupled kinetic
equations for the reduced distribution functions rather than
employing a boundary condition to model the chemical reaction
event. Lee and Karplus reformulated this reduced distribution
function (RDF) approach to deal with diffusion-influenced
reactions of a more complicated type, e.g., reactions involving
reversibility,11 a gating mode, and orientation-dependent reactiv-
ity.12

Most RDF theories of diffusion-influenced reactions invoke
a simplified version of the superposition approximation which
approximates a three-particle RDF as the product of two-particle
RDF’s for unlike particles undergoing reaction and neglects the
correlation between nonreacting like particles. This approxima-
tion (that will be called the “dynamic superposition approxima-
tion” hereafter) truncates the hierarchy of evolution equations
for many-particle RDF’s and gives closed kinetic equations for
two-particle RDF’s, which can be easily solved by numerical
analysis and in certain limiting cases yield analytical solutions.
Kalnin13 and Kuzovkov and Kotomin14-17 initiated the studies

on the effects of the like-particle correlation within the
framework of RDF theory. In particular, Kuzovkov and
Kotomin found that like particles tend to cluster at long
times,14-18 since a particle located in an environment where
nonreacting like particles are more densely populated than
reacting partners would have a better chance of surviving. This
kind of like-particle correlation effect can be important in the
long-time limit. However, there is another kind of like-particle
correlation which cannot be negligible even at short times. The
dynamic superposition approximation basically assumes that like
particles see each other as a point particle, so that the pair
correlation function between them is set equal to unity at all
separations. But the strong repulsive interaction between the

particles does not allow them to overlap, and thus the pair
correlation function should vanish when the separation becomes
less than the molecular diameter. This kind of like-particle
correlation effect, which may be called theexcludedVolume
effect, will be important when the particle concentration is high.
It may change the reaction rate up to quite a long time and thus
the time profiles of reactant concentrations.
Blumen and Manz considered the excluded volume effect on

reactions occurring in a solid solution where all reactant
molecules are static and the reaction occurs via a multipolar
interaction19 or an exchange mechanism.20 They used a lattice
model and generalized the results to a continuum limit.
However, they did not include the molecular diffusion process,
which is definitely important for reactions occurring in the liquid
solution. More recently, Fayeret al. also remarked about the
importance of the excluded volume effect in the long-range
electron transfer reaction in a solid21,22 and in a liquid solu-
tion.23,24 They extended the Blumen-Manz theory by including
a molecular diffusion process23 and also devised a new theory
using a ratherad hocansatz,the separable probability distribu-
tion approximation,22 as they called it. The theories both of
Blumen and Manz and of Fayeret al. predicted that when the
excluded volume is included, the survival probability falls more
rapidly than in the absence of the excluded volume. Fayeret
al. compared the theoretical results of Blumen and Manz and
their own with the Monte Carlo simulation result obtained for
the solid solution case, but the agreement was not satisfactory.22

Kalnin13 considered the excluded volume effect by using the
RDF approach. However, his analysis was limited to the long-
time regime and to the case of small concentration, although
the excluded volume effect is most significant in the short-time
regime, where reactant concentration can be quite high.
In this paper we study the excluded volume effect in the

transient kinetics. The paper is organized as follows. In section
II, a general theoretical framework for describing the excluded
volume effect is reviewed. In section III, specific reaction
models are adopted in the general kinetic equations described
in section II, and the resulting equations are solved numerically
to determine the time dependence of the reactant concentration.
The results are compared with those of Blumen-Manz theory
and Fayeret al.’s theory for long-range reactions. Judging from
the comparison with the simulation result of Swallenet al.,22

we see that the previous works underestimate the excluded
volume effect. In section IV, we give some concluding remarks.

II. RDF Formalism

We consider a simple irreversible reaction betweenA andB
molecules that gives a chemically inert product,
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We assume that the initial distribution of the reactant molecules
is random and macroscopically homogeneous in space.
The RDF formalism8-18 for diffusion-influenced bimolecular

reactions gives the usual rate equation for the time dependence
of reactant concentration along with a microscopic expression
for the rate coefficient:

Here [X] (X ) A or B) denotes the bulk number density of the
X molecules at timet. FAB(r,t) is the nonequilibrium pair
correlation function betweenA andBmolecules; [B]FAB(r,t)4πr2
dr gives the average number ofB molecules located at the
distance betweenr andr + dr away from anA molecule at the
coordinate origin at timet. SAB(r) is the sink function which
represents the rate of reaction when theA andB molecules are
separated byr.
The evolution equation forFAB(r,t) is given by14-18

whereLAB(r) is the nonreactive thermal evolution operator for
the pair correlation function andr ) |rA - rB| with rA andrB
denoting the positions of theA andB molecules of the primary
reacting pair. r ′A and r ′B denote the positions of theA andB
molecules which competitively react with the primary pair of
reactant molecules, andrA′B ) |r ′A - rB|, rAB′ ) |rA - r ′B|, and
so on.
Recently Molski and Keizer25 derived an evolution equation

for the reactant pair correlation function in the reversible reaction
case,A + B a C, using their statistical nonequilibrium
thermodynamics formalism. In the irreversible reaction limit
their evolution equation also carries terms that are similar to
the third and fourth terms in eq 2.4 and which arise from the
pair correlation between like particles. However, when they
actually calculate the reaction rate coefficient, they neglected
those terms by taking the limit of low density.
To solve eq 2.4, we need to know the pair correlation

functions between like particles,FAA andFBB. Coupled kinetic
equations forFAA andFBB can be obtained in a straightforward
manner (see refs 14-18). However, we expect that the like-
particle correlation effect on the transient kinetics is primarily
due to the excluded volume, and thus we approximateFAA and
FBB as the equilibrium pair correlation functions:

whereUXX (X ) A or B) denotes the potential of mean force
between twoX molecules andâ ) 1/kBT with the Boltzmann
constantkB and the absolute temperatureT. Although the
approximations given by eq 2.5 become inaccurate at long times
by neglecting the reaction-induced clustering of like mole-
cules14-18 as mentioned in the Introduction, it is believed that
this subtle like-particle correlation may be developed only after
the concentrations of reactant molecules drop below the

experimentally detectable limit. Anyway, our primary concern
in this paper is to consider only the excluded volume effect, as
with Blumen and Manz19,20 and Fayeret al.,21-24 and the
excluded volume effect is taken into account through the third
and fourth terms on the right hand side of eq 2.4.
We approximateLAB(r) as the nonreactive Smoluchowski

operator, which has the following form in the radial coordinate
space,

where d(r) denotes the relative diffusion coefficient, which
depends onr if the hydrodynamic interaction betweenA andB
molecules is included, andUAB(r) is the potential of mean force
betweenA andB. In writing eq 2.6, the dependence of the
diffusion coefficient on the solute concentration has been
neglected.4

WhenUAB(r) has a steep repulsive potential wall atr ) σAB,
we may impose the reflecting boundary condition on eq 2.4
which requires the inward flux atr ) σAB to vanish:

On the other hand, at infinite separation the pair distribution
becomes uncorrelated:

The initial condition for FAB(r,t) is assumed to be that of
equilibrium:

As did Blumen and Manz19,20and Fayeret al.,21-24we assume
for simplicity that equilibrium pair correlations between all
solute molecules are set up by the hard-sphere potentials between
them, which inhibit the molecules from penetrating through each
other; that is,

whereσXY (X, Y ) A or B) are the contact diameters between
X andY molecules andσAB ) (σAA + σBB)/2.
With the approximations in eq 2.10, eq 2.4 reduces to

whereæX(r,r′) (X ) A or B) is defined as

In eq 2.11, the excluded volume effect is considered through
the functionsæX(r,r′), which gives a positive contribution to
the integral values in the third and fourth terms locally in the
range|r - r′| < σXX, so thatFAB(r,t) would have a greater value
than that in the case without the excluded volume over the whole
range of space and time. We may give the following physical
interpretation for the excluded volume effect. Suppose that there

LAB(r) ) 1

r2
∂

∂r(r2d(r)e-âUAB(r) ∂

∂r
eâUAB(r)) (2.6)

[d(r)e-âUAB(r)( ∂∂reâUAB(r)FAB(r,t))]r)σAB
) 0 (2.7)

FAB(rf∞,t) ) 1 (2.8)

FAB(r,0)) gAB(r) ) exp[-âUAB(r)] (2.9)

gXY(r) ) {0 for r < σXY

1 for r g σXY
(2.10)

∂

∂t
FAB(r,t) ) LAB(r) FAB(r,t) - SAB(r) FAB(r,t) +

[A]{∫dr ′ 4πr′2SAB(r′) FAB(r′,t) æA(r,r ′)}FAB(r,t) +

[B]{∫dr ′ 4πr′2SAB(r′) FAB(r′,t) æB(r,r′)}FAB(r,t) (2.11)

æX(r,r′) ) {0 for |r - r′| g σXX

σXX
2 - (r - r′)2

4rr ′
for |r - r′| < σXX

(2.12)

A + B f P (2.1)

d[A]
dt

) -kb(t)[A][B] (2.2)

kb(t) )∫dr 4πr2SAB(r) FAB(r,t) (2.3)

∂

∂t
FAB(r,t) ) LAB(r) FAB(r,t) - SAB(r) FAB(r,t) +

[A]{∫dr ′A SAB(rA′B) FAB(rA′B,t)[1 - FAA(rAA ′)]}FAB(r,t) +

[B]{∫dr ′B SAB(rAB′) FAB(rAB′,t)[1 - FBB(rBB′)]}FAB(r,t)

(2.4)

FXX(|r ′X - rX|,t) ≈ gXX(|r ′X - rX|) )
exp[-âUXX(|r ′X - rX|)] (2.5)
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is aB molecule at the origin of the coordinate system. Thenr
denotes the position vector of anA molecule that is to react
with the B molecule at the origin, whiler ′ denotes that of
another A molecule, which competes with the formerA
molecule to react with theB molecule. The short-range
repulsive interaction between theA’s does not allow the later
A molecule to come into the region where|r - r ′| ≈ σAA, so
that the competition reaction is less salient than that in the case
without the excluded volume. The nonequilibrium pair cor-
relation function,FAB(r,t), depletes from the equilibrium value
more slowly, and so does the rate coefficient,kb(t), as defined
by eq 2.3. Hence the concentration decays more rapidly
according to eq 2.2 than in the case without the excluded
volume.
The rate equation in eq 2.2, the rate coefficient expression

in eq 2.3, and the evolution equation for the pair correlation
function in eq 2.11 together with the associated boundary
conditions in eqs 2.7 and 2.8 constitute the working equations
to evaluate the excluded volume effect in diffusion-influenced
bimolecular reactions. When the potential of mean force takes
the simple form of the hard-sphere potential as assumed by eq
2.10 and there is no hydrodynamic interaction, the Smolu-
chowski operator takes the form

whereD is the relative diffusion constant for a pair ofA andB
molecules.

III. Numerical Results

We consider two specific reaction models that have often
been considered in the theories dealing with diffusion-influenced
reactions.6 Hereafter we omit the subscriptAB in FAB, SAB,
andσAB to simplify the notations.
A. Contact Reaction. For many types of diffusion-

influenced bimolecular reactions in solution, such as radical
recombination,26,27fluorescence quenching,28-31 ligand-protein
binding,32 and so on, it has been assumed that the reaction occurs
when two hard-sphere reactants encounter at a certain distance
of r ) σ. In this model, the sink function takes the form of a
δ-function,

wherekC represents the intrinsic reaction rate coefficient that
may be observed when the pair correlation maintains the value
of unity at r ) σ. The rate coefficientkb(t) in eq 2.3 is then
given by

and the integrals in eq 2.11 can be easily evaluated to give

Theδ-function sink term on the right hand side of eq 3.3 is
cumbersome when the equation is solved numerically. But it
can be eliminated by replacing the reflecting boundary condition,
eq 2.7, with the radiative boundary condition,10,27,30

The excluded volume effect would be more pronounced in
the pseudo-first-order case, where one of the reactant species,
say B, is very large excess of the other, since the reactive
competition amongB molecules becomes salient. In this case,
[B] remains essentially at a constant valueCB andCB . [A] so
that the evolution equation forF(r,t) is decoupled from the rate
equation in eq 2.2:

In addition, the rate equation can be integrated to give the
survival probability as

Equation 3.5 is the same equation as Kalnin13 used in his
analysis of the excluded volume effect on the steady-state
reaction rate coefficient. In the illustrative calculation described
below, we will restrict ourselves to the pseudo-first-order case.
The time profile of the survival probability can be calculated

by solving the coupled equations in eqs 3.2 and 3.5. We will
sketch briefly the overall numerical scheme used. We discretize
the continuous time domain with a sufficiently small time step
∆t and denote the time at then-th step bytn ) n∆t. Since the
equation forF(r,t), eq 3.5, involves the rate coefficientkb(t),
which can be determined only if we knowF(r,t) as in eq 3.2,
we should solve it self-consistently at each step. To calculate
F(r,tn+1), we should know the value ofkb(tn+1). Takingkb(tn+1)
as a trial value forkb(tn+1), we evaluateF(r,tn+1) by using the
finite difference Crank-Nicholson scheme,33 which gives a
better estimate forkb(tn+1) from eq 3.2. In this way, we iterate
the calculation ofF(r,tn+1) using the successively better estimate
of kb(tn+1) until the relative change in the value ofkb(tn+1)
becomes less than a tolerance parameter, the value of which is
taken to be 1.0× 10-7 in all calculations.
There remains another technical point to discuss. In integrat-

ing the diffusion equation forF(r,t), the radial coordinate is
partitioned into a discrete grid in the finite difference scheme,
so that the outer boundary extended to infinity has to be
truncated at a finite separation. To reduce the numerical error
due to the truncation, one has to keep as many grid points as
possible to ensure sufficient spatial extension of the integration
range, but this uses much computing time. To avoid this
difficulty, we mapped the radial coordinate extending fromσ
to infinity into a new coordinate in the range (0, 1) by using
the following nonlinear transformation:27,30

whereR is a positive dimensionless parameter that may be
optimized. Since the transformation is nonlinear, a uniformly
spaced grid partitioning thex-space corresponds to a nonuniform
grid in ther-space. In fact, ther-space grid becomes more finely
spaced nearr ) σ, and this gives an additional advantage in
numerical implementation, since the pair correlation function
varies significantly only around the inner boundary region.
We carried out all calculations using dimensionless quantities.

There are three independent molecular parameters we can
change, which are the reduced diameter of theB molecule,rB
) σBB/σ, the reduced number density ofB molecules,ΦB )
σ3CB, and the ratio of the intrinsic reaction rate to the diffusion-
controlled rate,κ ) kC/4πσD. The time variable is scaled by
τD ) σ2/D.

LAB(r) ) D

r2
∂

∂r(r2
∂

∂r) (2.13)

S(r) t SC(r) ) kC
δ(r - σ)

4πσ2
(3.1)

kb(t) ) kCF(σ,t) (3.2)

∂

∂t
F(r,t) ) D

r2
∂

∂r(r2
∂

∂r
F(r,t)) - kC

δ(r - σ)

4πσ2
F(r,t) +

kb(t){[A]æA(r,σ) + [B]æB(r,σ)}F(r,t) (3.3)

4πσ2D( ∂∂rF(r,t))r)σ
) kCF(σ,t) (3.4)

∂

∂t
F(r,t) ) D

r2
∂

∂r(r2
∂

∂r
F(r,t)) + CBkb(t) æB(r,σ) F(r,t) (3.5)

R(t) t [A]t/[A]0 ) exp[-CB∫0tdτ kb(τ)] (3.6)

x) exp[-R(rσ - 1)] (3.7)

Diffusion-Influenced Bimolecular Reactions J. Phys. Chem. A, Vol. 101, No. 29, 19975257



First, we have checked the accuracy of our numerical analysis
by comparing the survival probability, calculated numerically
from eqs 3.2, 3.5, and 3.6 for the zero excluded volume case,
with the analytic survival probability expression26,32

whereΩ(x) ) ex2 erfc(x). The agreement has been perfect.
Figure 1 displays the excluded volume effect predicted by

the RDF theory. As expected, the survival probability decays
more rapidly with the increase of the size ofB molecules. It
seems that inclusion of the excluded volume effect is essential
in the experimental interpretation of the concentration decay
curve, unless theB molecules are much smaller thanA
molecules (i.e.σBB , σ). The importance of the excluded
volume effect will be pronounced in reactions involving
macromolecules.
In Figures 2 and 3, we compare the decay curve of the

survival probability with the excluded volume effect included
(rB ) 1) and that without the excluded volume effect (rB ) 0)
for several sets of parametersΦB andκ. Figure 2 shows that
the excluded volume effect is more pronounced for a high
concentration ofB molecules (ΦB ) σ3CB). This observation

is also consistent with the physical interpretation of the excluded
volume effect described in section II; the competition among
Bmolecules for theA molecule will be more severe when their
concentration is high. Figure 3 shows that the excluded volume
effect is more pronounced as the intrinsic reaction rate becomes
much larger than the diffusion-controlled reaction rate.
B. Long-Range Reaction. Some types of reactions in

solution have been known to occur over a range of spatial
separations between the reactants rather than at the specific
contact distance.6 As a long-range reaction model we will
consider the excited-state electron-transfer reaction, which was
considered by Fayeret al.21-24 in regard to the excluded volume
effect:

A* molecules are prepared by a very short light pulse in the
reaction vessel att ) 0. Then they decay with a finite lifetime,
τS, via radiative or nonradiative channels, or transfer the
excitation energy toBmolecules through electron transfer with
the forward rate coefficientkb(t). The sink function for the
forward electron transfer is represented by6,21-24

wherea represents the range within which the electron transfer
reaction occurs significantly andkET is the electron transfer rate
when anA* and aB molecule are separated by the contact
distanceσ.
Although we did not include the unimolecular decay process

in the formalism described in section II, it can be incorporated
into the formalism in a straightforward way, as was done in
the fluorescence quenching kinetics.28-31 Again, we concentrate
only on the pseudo-first-order case, which represents the most
experimental situations when the excitation laser pulse intensity
is not too strong. Then the rate equation, including the effect
of the unimolecular decay ofA*, becomes

where the rate coefficient is given by

The evolution equation for the nonequilibrium pair correlation

Figure 1. Excluded volume effect on the survival probability. Values
of the parameters used in the calculation areκ ) kc/4πσD ) 10 and
ΦB ) σ3CB ) 0.15. The value ofrB()σBB/σ) is varied as shown. As
σBB increases, the excluded volume effect becomes more pronounced.

Figure 2. Dependence of the excluded volume effect on the concentra-
tion of B molecules,ΦB ) σ3CB. The intrinsic reaction rate parameter
κ is set equal to 10.

R(t) ) exp[-4πΦB( κ

1+ κ){Dtσ2
+ κ

1+ κ(2x Dt

σ2π
-

1- Ω((1+ κ) xDt/σ)
1+ κ )}] (3.8)

Figure 3. Dependence of the excluded volume effect on the intrinsic
reaction rate parameter,κ ) kC/4πσD. TheB molecule concentration
parameterΦB is set equal to 0.15.

A* + B98
kb(t)

A+ ‚‚‚ B- (3.9)

S(r) t SL(r) ) kET exp(- r - σ
a ) (3.10)

d
dt
[A*] ) -(1τS + CBkb(t))[A*] (3.11)

kb(t) )∫σ∞
dr 4πr2SL(r) F(r,t) (3.12)
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function can be shown to be

whereæB(r,r′) is that defined in eq 2.12. We impose the same
boundary conditions as given in eqs 2.7 and 2.8.
Unlike the case of contact reaction, we should solve the full

partial integro-differential equation, eq 3.13, to obtainF(r,t),
and integrate the numerically evaluated pair correlation function,
multiplied by the sink function, over the radial coordinate to
obtain the time-dependent rate coefficient as in eq 3.12. We
then integrate eq 3.11 to obtain the decay function for [A*],

There have been a few approximate theories that consider
the excluded volume effect in the long-range reactions. Blumen
and Manz19,20 used the lattice model to treat the long-range
energy transfer reaction in a solid solution. By having the
immobile acceptor molecules (B molecules in our notation)
occupy the lattice sites separated by the acceptor diameter, they
included the acceptor excluded volume effect. They used a
probabilistic argument to obtain the ensemble averaged decay
function, which corresponds to the survival probability in our
theory. Then they applied the continuum approximation to get
the survival probability in a closed form,19,20

wherep ) σBB
3 CB.

More recently, Fayeret al.21-24 investigated the reaction
model represented by eq 3.9. They considered the case where
a single excited donor molecule, located at the origin, is
surrounded by many acceptor molecules. If the acceptor
molecules are point particles, the many-particle radial probability
density function for theN acceptor molecules can be separated
into a product ofN individual two-particle radial probability
density functions. Swallenet al.22 argued that this approxima-
tion could be made even in the presence of acceptor-acceptor
excluded volume if one multiplies each of the two-particle radial
probability density functions by an equilibrium radial distribution
function g(r) between reactant molecules. Following this
“separable probability distribution approximation”, they sug-
gested that the expression for the survival probability of the
excited donor, derived by Inokuti and Hirayama34 for the case
with acceptor molecules devoid of the excluded volume, may
be adapted into the form

When the reactant molecules are point particles,g(r) equals to
unity at all values ofr. For molecules with finite sizes, the
analytical solution of the Percus-Yevick equation for the hard-
sphere potential was used forg(r).35,36

The above two theories can be applied to the electron transfer
reaction occurring in a solid solution where all the solute
molecules are immobile. However, the formulations can be

generalized to include the molecular diffusion. For example,
Dorfman and Fayer23 generalized the theory of Blumen and
Manz19,20 to obtain

Although generalization of eq 3.16 has not been made explicitly
by Swallenet al.,22,24 the following expression can be readily
suggested:

In eqs 3.17 and 3.18,Fo(r,t) is the pair correlation functionin
the absence of the excludedVolume effect; that is, it is the
solution of

with the same initial and boundary conditions as those of
F(r,t). Note that eqs 3.17 and 3.18 reduce to eqs 3.15 and 3.16,
respectively, when the relative diffusion constantD goes to zero
in eq 3.19.
Numerical methods used in the calculation of the survival

probability in the long-range reaction case are similar to those
in the contact reaction case except that in solving the pair
correlation function evolution equation, eq 3.13, we should use
the reflecting boundary condition in eq 2.7 instead of the
radiative boundary condition in eq 3.4 and should include the
unimolecular decay term in the rate equation as in eq 3.11. At
a given time step we solve the partial integro-differential
equation, eq 3.13, by generalizing the finite difference Crank-
Nicholson scheme to manipulate the integral term on the right
hand side. F(r,t) so obtained is then used to calculate the
bimolecular rate coefficient from eq 3.12 and in turn the time
profile of the concentration decay ofA* molecules according
to eq 3.11.
In Figure 4, the numerical results of the RDF theory are

compared with those of Blumen-Manz and Fayeret al. In
Figure 4a the solute molecules are immobile, while in Figure
4b they are mobile with the relative diffusion constant ofD )
1.0× 10-6 cm2/s. We set the size ofB molecule equal to that
of the A molecule; that is,σBB ) σ. The values of other
parameters used are given in the figure caption. First, it can
be seen that all three theories predict that the survival probability
decays more rapidly when the acceptor-acceptor excluded
volume is taken into account regardless of the mobility of the
solute molecules. However, the RDF theory predicts the fastest
decay of the survival probability due to the excluded volume.
For the case depicted in Figure 4a, the numerical result of the
Blumen-Manz theory19,20 is hardly distinguishable from that
of Swallenet al.’s.22 At short times the latter predicts faster
decay ofR(t), but at long times the trend appears to be reversed.
We can see a similar trend in the results of Dorfman-Fayer23

and Swallenet al.22 in Figure 4b. It is also interesting to note
that although the difference is small, the excluded volume effect
is more pronounced for static reactant molecules than for the
mobile ones.
Swallen et al. performed Monte Carlo simulations of the

electron transfer reaction occurring in a solid solution22 and in
a liquid solution.24 Their simulation results also show that when
the excluded volume is included the survival probability falls
off more rapidly than in the absence of the excluded volume.

∂

∂t
F(r,t) ) D

r2
∂

∂r(r2
∂

∂r)F(r,t) - SL(r) F(r,t) +

CB{∫σ∞
dr′ 4πr′2SL(r′) F(r′,t) æB(r,r′)}F(r,t) (3.13)

R(t) exp(t/τS) ) exp[-CB∫0tdτ kb(τ)] )

exp[-4πCB∫0tdτ∫σ∞
dr r 2SL(r) F(r,τ)] (3.14)

RBM(t) exp(t/τS) ) exp[4πCB

p ∫σ∞
dr r 2 ln(1- p+

p exp(-SL(r)t))] (3.15)

RSW(t) exp(t/τS) ) exp[-4πCB∫σ∞
dr r 2(1-

exp(-SL(r)t))g(r)] (3.16)

RDF(t) exp(t/τS) ) exp[4πCB

p ∫σ∞
dr r 2 ln(1- p+ pFo(r,t))]

(3.17)

RSW(t) exp(t/τS) ) exp[-4πCB∫σ∞
dr r 2(1- Fo(r,t))g(r)]

(3.18)

∂

∂t
Fo(r,t) ) D

r2
∂

∂r(r2
∂

∂r)Fo(r,t) - SL(r) Fo(r,t) (3.19)
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Moreover, the simulation results indicate a faster decay of the
survival probability due to the excluded volume effect than that
predicted by their theory. Because detailed numerical data of
their simulation are not available to us, we are not able to make
a direct comparison of the present calculation with their
simulation results. Nevertheless, judging from the fact that the
RDF theory predicts a larger excluded volume effect than
Swallenet al.’s theory, we expect that the RDF theory would
give results in better accordance with the simulation.
As the size ofB molecules becomes larger, the excluded

volume effect gets more pronounced and the survival probability
decay curve calculated from the RDF theory deviates more from
those of other theories. This can be seen from the comparison
of Figures 4 and 5. In Figure 5, we setσBB equal to 1.2σ. Other

reaction and motional parameters used in the calculations are
the same as those in Figure 4. Swallenet al.’s theory22 is not
applicable whenσBB > σ.

IV. Concluding Remarks

We have investigated the excluded volume effect in the
diffusion-influenced bimolecular reaction of the typeA + B f
P. Within the framework of the hierarchical RDF approach,
the excluded volume between nonreacting like molecules can
be taken into account by applying the Kirkwood superposition
approximation to the three-particle RDF’s. The rate equation
in eq 2.2, the rate coefficient expression in eq 2.3, and the kinetic
equation for the nonequilibrium pair correlation function in eq

Figure 4. Comparison of the various theories accounting for the excluded volume effect in the long-range reaction. All three theories predict that
the survival probability decays more rapidly when the excluded volume is taken into account in both cases (a) of solid solution and (b) of liquid
solution. The molecular parameters used areσ ) σBB ) 7.2 Å, a ) 0.9Å, kET ) 19.27 ns-1, andCB ) 0.445 M, corresponding toΦB ) 0.1.D is
set to zero in part a and to 1.0× 10-6 cm2/s in part b, which givesτD ) 5.18 ns. Note that we have plottedR(t) exp(t/τS) instead ofR(t) to single
out the decay rate due to the bimolecular reaction.

Figure 5. Comparison of the various theories whenσBB ) 1.2σ. Other reaction and motional parameters are the same as in Figure 4.
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2.11 are the general set of equations that needs to be solved to
evaluate the excluded volume effect. For two simple reaction
models, the general equations were manipulated to give simpler
forms and evaluated by numerical analysis.
We have found that inclusion of the excluded volume renders

reactant concentrations to decay more rapidly than in the
calculation neglecting it. The physical origin of the excluded
volume effect can be attributed to the partial suppression of
competition among like molecules for a reacting partner, which
makes the pair distribution between reacting molecules deplete
more slowly at small separations. The excluded volume effect
gets more pronounced, as the size of the reactant molecules
increases and the reactant concentration becomes higher. It
seems that consideration of the excluded volume is essential in
many experimental situations.
Comparison of the numerical results of the RDF theory with

those of Blumen and Manz19,20 and Fayeret al.21-24 shows
qualitative agreement. However, the RDF theory predicts a
larger excluded volume effect than the other theories, and the
deviation becomes larger as the size of reactant molecules
increases. In this respect, it is encouraging to note that a recent
computer simulation study by Swallenet al.22 predicted a larger
excluded volume effect than their theory can explain.
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