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Excluded Volume Effect on the Diffusion-Influenced Bimolecular Reactions
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By applying the reduced distribution function approach to the diffusion-influenced bimolecular reaction, we

evaluate the effect of excluded volume between nonreacting like molecules on the transient kinetics. It is
found that concentrations of reactant molecules decay more rapidly with the excluded volume taken into
account than without it. Comparison with previous works dealing with the excluded volume effect shows a
gualitative agreement, but it appears that previous works underestimate the excluded volume effect.

I. Introduction particles does not allow them to overlap, and thus the pair
correlation function should vanish when the separation becomes
- Y less than the molecular diameter. This kind of like-particle
theoretical approaches were proposed to treat the kinetics of .5 relation effect, which may be called tlescludedzolume

diffusion-influenced bimolecular reactions in solutirt® Of oftect will be important when the particle concentration is high.
the various approaches, those based on a hierarchy of evolution; may change the reaction rate up to quite a long time and thus
equations for the reduced distribution functions of reactant e time profiles of reactant concentrations.

molecules are particularly attractive, since they provide a = gjymen and Manz considered the excluded volume effect on
systematic theoretical framework for dealing with the diffusion- e actions occurring in a solid solution where all reactant
'nﬂ,uer:fi? reaction involved in a complicated reaction mech- mjecyles are static and the reaction occurs via a multipolar
anism: interactior® or an exchange mechanisfh They used a lattice

It was Waité and Monchicket al.® who initiated this line of model and generalized the results to a continuum limit.
theories. Wilemski and Fixmah improved the formalism  However, they did not include the molecular diffusion process,
significantly by introducing a sink function in the coupled kinetic - which is definitely important for reactions occurring in the liquid
equations for the reduced distribution functions rather than solution. More recenﬂy, Fay@t al. also remarked about the
employing a boundary condition to model the chemical reaction jmportance of the excluded volume effect in the long-range
event. Lee and Karplus reformulated this reduced distribution electron transfer reaction in a sdi¢2and in a ||qu|d solu-
function (RDF) approach to deal with diffusion-influenced tjon2324 They extended the BlumerManz theory by including
reactions of a more complicated type, e.g., reactions involving a molecular diffusion proce¥sand also devised a new theory
reversibility!* a gating mode, and orientation-dependent reactiv- ysing a rathead hocansatzthe separable probability distribu-
ity.12 tion approximatiorf? as they called it. The theories both of

Most RDF theories of diffusion-influenced reactions invoke Blumen and Manz and of Fayet al. predicted that when the
a simplified version of the superposition approximation which excluded volume is included, the survival probability falls more
approximates a three-particle RDF as the product of two-particle rapidly than in the absence of the excluded volume. Fayer
RDF’s for unlike particles undergoing reaction and neglects the al. compared the theoretical results of Blumen and Manz and
correlation between nonreacting like particles. This approxima- their own with the Monte Carlo simulation result obtained for
tion (that will be called the “dynamic superposition approxima- the solid solution case, but the agreement was not satisfe@tory.
tion” hereafter) truncates the hierarchy of evolution equations  Kalnin'3 considered the excluded volume effect by using the
for many-particle RDF’s and gives closed kinetic equations for RDF approach. However, his analysis was limited to the long-
two-particle RDF’s, which can be easily solved by numerical time regime and to the case of small concentration, although
analysis and in certain limiting cases yield analytical solutions. the excluded volume effect is most significant in the short-time

Kalnin'3and Kuzovkov and Kotomif~17 initiated the studies ~ regime, where reactant concentration can be quite high.
on the effects of the like-particle correlation within the In this paper we study the excluded volume effect in the
framework of RDF theory. In particular, Kuzovkov and transient kinetics. The paper is organized as follows. In section
Kotomin found that like particles tend to cluster at long I, a general theoretical framework for describing the excluded
times14-18 since a particle located in an environment where volume effect is reviewed. In section lil, specific reaction
nonreacting like particles are more densely populated thanmodels are adopted in the general kinetic equations described
reacting partners would have a better chance of surviving. Thisin section I, and the resulting equations are solved numerically
kind of like-particle correlation effect can be important in the to determine the time dependence of the reactant concentration.
long-time limit. However, there is another kind of like-particle  The results are compared with those of Bluméfanz theory
correlation which cannot be negligible even at short times. The and Fayeet al’s theory for long-range reactions. Judging from
dynamic superposition approximation basically assumes that like the comparison with the simulation result of Swallenal. 22
particles see each other as a point particle, so that the pairwe see that the previous works underestimate the excluded
correlation function between them is set equal to unity at all volume effect. In section IV, we give some concluding remarks.
separations. But the strong repulsive interaction between the

Since the pioneering work of von Smoluchowsknany

Il. RDF Formalism

* Author to whom correspondence should be addressed. We consider alsimple irrevgrsible reaction betw@esndB
€ Abstract published ilAdvance ACS Abstractguly 1, 1997. molecules that gives a chemically inert product,
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experimentally detectable limit. Anyway, our primary concern
in this paper is to consider only the excluded volume effect, as

We assume that the initial distribution of the reactant molecules with Blumen and Mar®2° and Fayeret al,2-24 and the

is random and macroscopically homogeneous in space.
The RDF formalisrfi18 for diffusion-influenced bimolecular

excluded volume effect is taken into account through the third
and fourth terms on the right hand side of eq 2.4.

reactions gives the usual rate equation for the time dependence \yve approximateLag(r) as the nonreactive Smoluchowski
of reactant concentration along with a microscopic expression gperator, which has the following form in the radial coordinate

for the rate coefficient:

d[A] _
i~ MIAIB]

2.2)

ke(t) = fdr 471°Sp(r) Pas(r 1)

Here [X] (X = A or B) denotes the bulk number density of the
X molecules at timet. pag(r,t) is the nonequilibrium pair
correlation function betweefs andB molecules; B] pas(r,t)4mr?
dr gives the average number & molecules located at the
distance betweenandr + dr away from anmA molecule at the
coordinate origin at timé. Sag(r) is the sink function which
represents the rate of reaction when ghandB molecules are
separated by.

The evolution equation fopas(r,t) is given by4-18

(2.3)

%pAB(rvt) = Lag(r) pag(rt) — Sag(r) pas(rit) +
[A]{fdrk Sae(rae) Pas(Tas DL = Paa(Fan)]} pas(r t) +

[B]{fdr;a Sae(rag) Pas(MagDIL — Ppe(ree)]} Pas(r:t)
(2.4)

whereLag(r) is the nonreactive thermal evolution operator for
the pair correlation function and= |rp — rg| with ra andrg
denoting the positions of th andB molecules of the primary
reacting pair. ra andrg denote the positions of th& andB
molecules which competitively react with the primary pair of
reactant molecules, am@g = |[rA — rgl|, Fas' = |[ra — I'g|, and
SO0 on.

Recently Molski and Keiz&? derived an evolution equation
for the reactant pair correlation function in the reversible reaction
case,A + B = C, using their statistical nonequilibrium
thermodynamics formalism. In the irreversible reaction limit
their evolution equation also carries terms that are similar to
the third and fourth terms in eq 2.4 and which arise from the
pair correlation between like particles. However, when they

space,

=1 9/ 241y PUre0d B
Lug(D) = 5 3(r"d(e < (2.6)

where df) denotes the relative diffusion coefficient, which
depends on if the hydrodynamic interaction betweénandB
molecules is included, ardag(r) is the potential of mean force
betweenA andB. In writing eq 2.6, the dependence of the
diffusion coefficient on the solute concentration has been
neglected.

WhenUag(r) has a steep repulsive potential walfat oag,
we may impose the reflecting boundary condition on eq 2.4
which requires the inward flux at= oag to vanish:

[d(r)e—ﬂuAB(r)( a% PUre) pAB(fit))]

0

(2.7)

=05

On the other hand, at infinite separation the pair distribution
becomes uncorrelated:
pas(r—oo) =1 (2.8)
The initial condition for pag(r,t) is assumed to be that of
equilibrium:
Pas(r0) = gap(r) = exp[=AUxg(r)] (2.9)
As did Blumen and Mar2-?°and Fayeet al,?'~2* we assume
for simplicity that equilibrium pair correlations between all
solute molecules are set up by the hard-sphere potentials between

them, which inhibit the molecules from penetrating through each
other; that is,

0 forr < oxy

1 forr = oxy (2.10)

Oxy () = {

whereoxy (X, Y = A or B) are the contact diameters between
X andY molecules andag = (0an + 0o8B)/2.

actually calculate the reaction rate coefficient, they neglected ~ With the approximations in eq 2.10, eq 2.4 reduces to

those terms by taking the limit of low density.

To solve eq 2.4, we need to know the pair correlation
functions between like particlespa andpgs. Coupled kinetic
equations fopaa andpgg can be obtained in a straightforward
manner (see refs 1418). However, we expect that the like-
particle correlation effect on the transient kinetics is primarily
due to the excluded volume, and thus we approximateand
pes as the equilibrium pair correlation functions:

Pxx (1 = Ty [,Y) ~ Gy (IT% — Ix]) =
exp[—BUxy(Irk — rxl)] (2.5)
whereUxx (X = A or B) denotes the potential of mean force

between twaX molecules ang = 1/kgT with the Boltzmann
constantks and the absolute temperatuffe Although the

L 0aa 1) = Lag(1) pas() = Sua(r) pas(r) +
[AI{ fdr' 4ar°Syg(r') pag(r',) @a(rir)} oas(rt) +
[BI{ [dr' 4mr?S,p(r') pag(r'.t) @a(rr)} pag(rt) (2.11)
wheregx(r,r') (X = A or B) is defined as
0

N 2 "2
px(rr) =y ox” —(r =) for |r — r'| < oy

4rr!

for |[r —r'| = oyy
(2.12)

Ineq 2.11, the excluded volume effect is considered through
the functionsgx(r,r'), which gives a positive contribution to

approximations given by eq 2.5 become inaccurate at long timesthe integral values in the third and fourth terms locally in the
by neglecting the reaction-induced clustering of like mole- rangelr — r'| < oxx, SO thatoas(r,t) would have a greater value
cules*18 as mentioned in the Introduction, it is believed that than that in the case without the excluded volume over the whole
this subtle like-particle correlation may be developed only after range of space and time. We may give the following physical
the concentrations of reactant molecules drop below the interpretation for the excluded volume effect. Suppose that there
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is aB molecule at the origin of the coordinate system. Then The excluded volume effect would be more pronounced in
denotes the position vector of & molecule that is to react  the pseudo-first-order case, where one of the reactant species,
with the B molecule at the origin, whileg' denotes that of  say B, is very large excess of the other, since the reactive
another A molecule, which competes with the formex competition amond® molecules becomes salient. In this case,
molecule to react with theB molecule. The short-range [B] remains essentially at a constant valtieandCg > [A] so
repulsive interaction between ti#es does not allow the later  that the evolution equation fei(r,t) is decoupled from the rate

A molecule to come into the region where— r'| ~ oaa, SO equation in eq 2.2:

that the competition reaction is less salient than that in the case
without the excluded volume. The nonequilibrium pair cor-
relation function,oag(r,t), depletes from the equilibrium value
more slowly, and so does the rate coefficidgtt), as defined

by eq 2.3. Hence the concentration decays more rapidly |n addition, the rate equation can be integrated to give the
according to eq 2.2 than in the case without the excluded syrvival probability as

D3

=il 3P0 ) + Caklt) elr0) o) (35)

Gl _
atp(r,t) =

volume.
The rate equation in eq 2.2, the rate coefficient expression _ . - t
in eq 2.3, and the evolution equation for the pair correlation R() = [Al/[A], = expl CBD/(‘JdT k(@] (3.6)

function in eq 2.11 together with the associated boundary
conditions in eqs 2.7 and 2.8 constitute the working equations Equation 3.5 is the same equation as Kaffinsed in his
to evaluate the excluded volume effect in diffusion-influenced analysis of the excluded volume effect on the steady-state
bimolecular reactions. When the potential of mean force takes reaction rate coefficient. In the illustrative calculation described
the simple form of the hard-sphere potential as assumed by egbelow, we will restrict ourselves to the pseudo-first-order case.
2.10 and there is no hydrodynamic interaction, the Smolu-  The time profile of the survival probability can be calculated
chowski operator takes the form by solving the coupled equations in egs 3.2 and 3.5. We will
sketch briefly the overall numerical scheme used. We discretize
Laa(r) = D Q(rzg) (2.13) the continuous time_ domain with a sufficiently sma_ll time step
p2or\ or At and denote the time at theth step byt, = nAt. Since the
equation forp(r,t), eq 3.5, involves the rate coefficieky(t),
whereD is the relative diffusion constant for a pair AfandB which can be determined only if we know(r t) as in eq 3.2,
molecules. we should solve it self-consistently at each step. To calculate
o(r,th+1), we should know the value &f(th+1). Takingkp(tn+1)
IIl. Numerical Results as a trial value fok(tn+1), We evaluateo(r,th+1) by using the
We consider two specific reaction models that have often finite difference Crank Nicholson schemé& which gives a
been considered in the theories dealing with diffusion-influenced Petter estimate foky(tn+1) from eq 3.2. In this way, we iterate
reaction$ Hereafter we omit the subscrigtB in pas, Sas, the calculation op(r,th+1) gsing the sucpessively better estimate
andong to simplify the notations. of ku(th+1) until the relative change in the value &f(tn+1) o
A. Contact Reaction. For many types of diffusion- becomes less than a t(_)lerance parameter, the value of which is
influenced bimolecular reactions in solution, such as radical taken to be 1.0< 107" in all calculations.
recombinatioﬁ’fi,27ﬂuorescence quenchiﬁéj?’l |igand_pr0tein . There rgmajns anoth?r technical pOint to qiSCUSS. .ln inte.grat'
binding32and so on, it has been assumed that the reaction occurdnd the diffusion equation fop(r.t), the radial coordinate is
when two hard-sphere reactants encounter at a certain distanc@artitioned into a discrete grid in the finite difference scheme,
of r = ¢. In this model, the sink function takes the form of a SO that the outer boundary extended to infinity has to be

o-function, truncated at a finite separation. To reduce the numerical error
due to the truncation, one has to keep as many grid points as

. o(r — o) possible to ensure sufficient spatial extension of the integration

) =& = kcm (3.1) range, but this uses much computing time. To avoid this

difficulty, we mapped the radial coordinate extending from
wherekc represents the intrinsic reaction rate coefficient that to infinity into a new coordinate in the range (0, 1) by using
may be observed when the pair correlation maintains the valuethe following nonlinear transformatiof:*°
of unity atr = 0. The rate coefficienky(t) in eq 2.3 is then

given by X = ex;{—a(g - 1)] 3.7)

ke(t) = kep(0,1) (3.2)
where o is a positive dimensionless parameter that may be
and the integrals in eq 2.11 can be easily evaluated to give optimized. Since the transformation is nonlinear, a uniformly
spaced grid partitioning thespace corresponds to a nonuniform
Qp(r,t) _ Qﬁ( Zﬁp(r,t)) _ kc6(r - O)p(l’,t) + grid in ther-space. In fact, the space grid becomes more finely
ot p2or\ or A o? spaced near = ¢, and this gives an additional advantage in
ko (D{[A]@a(r,0) + [Bl@g(r,0)} o(r.t) (3.3) numerical implementation, since the pair correlation function
varies significantly only around the inner boundary region.
Thed-function sink term on the right hand side of eq 3.3 is We carried out all calculations using dimensionless quantities.
cumbersome when the equation is solved numerically. But it There are three independent molecular parameters we can
can be eliminated by replacing the reflecting boundary condition, change, which are the reduced diameter ofBh@olecule,rs
eq 2.7, with the radiative boundary conditi#k?7-30 = ogglo, the reduced number density Bf molecules,®g =
0°Cg, and the ratio of the intrinsic reaction rate to the diffusion-
4ﬂ02D(a%p(r,t))r = kep(oh) (3.4) gorEr%ILt/ag ratex = ko/4roD. The time variable is scaled by
=0 D — .
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Figure 1. Excluded volume effect on the survival probability. Values
of the parameters used in the calculation are kJ/47oD = 10 and
®g = 0°Cg = 0.15. The value ofg(=0gs/0) is varied as shown. As
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Figure 3. Dependence of the excluded volume effect on the intrinsic
reaction rate parameter,= kc/4woD. The B molecule concentration
parameteds is set equal to 0.15.

ogs increases, the excluded volume effect becomes more pronounced.
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Figure 2. Dependence of the excluded volume effect on the concentra-
tion of B molecules®g = 0°Cg. The intrinsic reaction rate parameter
Kk is set equal to 10.

is also consistent with the physical interpretation of the excluded
volume effect described in section II; the competition among
B molecules for the\ molecule will be more severe when their
concentration is high. Figure 3 shows that the excluded volume
effect is more pronounced as the intrinsic reaction rate becomes
much larger than the diffusion-controlled reaction rate.

B. Long-Range Reaction. Some types of reactions in
solution have been known to occur over a range of spatial
separations between the reactants rather than at the specific
contact distancé. As a long-range reaction model we will
consider the excited-state electron-transfer reaction, which was
considered by Fayeat al?124in regard to the excluded volume
effect:

k(1)

A*+B— A" - B~ (3.9)

A* molecules are prepared by a very short light pulse in the
reaction vessel @= 0. Then they decay with a finite lifetime,
7s, via radiative or nonradiative channels, or transfer the
excitation energy t@® molecules through electron transfer with

First, we have checked the accuracy of our numerical analysisthe forward rate coefficienky(t). The sink function for the

by comparing the survival probability, calculated numerically

from eqgs 3.2, 3.5, and 3.6 for the zero excluded volume case,

with the analytic survival probability express#ii?

R(t) = exp[—4n<1>B s {% - K(z % _
1— Q((1 + «) VDtlo)
1+« )” 38

whereQ(x) = e erfc(x). The agreement has been perfect.
Figure 1 displays the excluded volume effect predicted by

the RDF theory. As expected, the survival probability decays

more rapidly with the increase of the size Bfmolecules. It

forward electron transfer is represented¥y?2*

=g

2]
wherea represents the range within which the electron transfer
reaction occurs significantly arigr is the electron transfer rate
when anA* and aB molecule are separated by the contact
distanceo.

Although we did not include the unimolecular decay process
in the formalism described in section Il, it can be incorporated
into the formalism in a straightforward way, as was done in
the fluorescence quenching kinetfés3! Again, we concentrate
only on the pseudo-first-order case, which represents the most

SN =S = ker exf (3.10)

seems that inclusion of the excluded volume effect is essential experimental situations when the excitation laser pulse intensity
in the experimental interpretation of the concentration decay is not too strong. Then the rate equation, including the effect

curve, unless theB molecules are much smaller thah
molecules (i.e.ogs < 0). The importance of the excluded
volume effect will be pronounced in reactions involving
macromolecules.

In Figures 2 and 3, we compare the decay curve of the
survival probability with the excluded volume effect included
(rs = 1) and that without the excluded volume effegs € 0)
for several sets of parametefg and«. Figure 2 shows that
the excluded volume effect is more pronounced for a high
concentration oB molecules g = ¢3Cg). This observation

of the unimolecular decay d&*, becomes

§A1 =L r ool @
where the rate coefficient is given by
k() = ["dr 47r’S (r) p(r 1) (3.12)

The evolution equation for the nonequilibrium pair correlation
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function can be shown to be

Sarl a0 — S @ 0 +

Col [ 4712, (1) p(r' ) 1.1 )} p(r) (3.13)

wheregg(r,r') is that defined in eq 2.12. We impose the same
boundary conditions as given in egs 2.7 and 2.8.

Unlike the case of contact reaction, we should solve the full
partial integro-differential equation, eq 3.13, to obtain,t),

9 -
atp(r 1t) -

and integrate the numerically evaluated pair correlation function,

multiplied by the sink function, over the radial coordinate to

obtain the time-dependent rate coefficient as in eq 3.12. We

then integrate eq 3.11 to obtain the decay function £of],[

R(t) expt/re) = exp[~Cg [0 ky(2)] =
exp[~47Cy [idv [dr 1S (1) p(r,7)] (3.14)

There have been a few approximate theories that consider
the excluded volume effect in the long-range reactions. Blumen

and Manz2%20 ysed the lattice model to treat the long-range
energy transfer reaction in a solid solution. By having the
immobile acceptor moleculedB(molecules in our notation)

J. Phys. Chem. A, Vol. 101, No. 29, 199%259

generalized to include the molecular diffusion. For example,
Dorfman and Fay@? generalized the theory of Blumen and
ManZ°2°to obtain

47C,
p

Lwdr r’In(l—p+ ppo(r,t))]
(3.17)

Ror(t) exptizg) = eXP[

Although generalization of eq 3.16 has not been made explicitly
by Swallenet al.,??24the following expression can be readily
suggested:

Rsult) expt/ze) = exp[~47Cy [ dr r3(1 — py(r,t)g(r)]
(3.18)

In egs 3.17 and 3.18(r,t) is the pair correlation functiom
the absence of the excludedlume effegtthat is, it is the
solution of

D
2

Sl a0 S0 e (319)

9 -
atpo(r Yt) -

with the same initial and boundary conditions as those of
p(r,t). Note that eqs 3.17 and 3.18 reduce to egs 3.15 and 3.16,
respectively, when the relative diffusion constBrgoes to zero

occupy the lattice sites separated by the acceptor diameter, theyy, eq 3.19.

included the acceptor excluded volume effect. They used a

Numerical methods used in the calculation of the survival

probabilistic argument to obtain the ensemble averaged decaypgpapility in the long-range reaction case are similar to those

function, which corresponds to the survival probability in our
theory. Then they applied the continuum approximation to get
the survival probability in a closed for#i,2°

47 C,
p

Rey(t) expt/zy) = exp{ SCdrr?in( —p+

p eXP(—SL(r)t))] (3.15)

wherep = 635Cs.
More recently, Fayeet al?%24 investigated the reaction

model represented by eq 3.9. They considered the case Wheréf)

a single excited donor molecule, located at the origin, is
surrounded by many acceptor molecules.
molecules are point particles, the many-particle radial probability
density function for thé\ acceptor molecules can be separated
into a product ofN individual two-particle radial probability
density functions. Swalleat al?? argued that this approxima-
tion could be made even in the presence of accejsoceptor
excluded volume if one multiplies each of the two-particle radial
probability density functions by an equilibrium radial distribution
function g(r) between reactant molecules. Following this
“separable probability distribution approximation”, they sug-
gested that the expression for the survival probability of the
excited donor, derived by Inokuti and Hirayathéor the case
with acceptor molecules devoid of the excluded volume, may
be adapted into the form

Rsw(t) exp/re) = exp[~47Cg [ dr r’(1 —
expS (N (3.16)

When the reactant molecules are point particigs), equals to
unity at all values ofr. For molecules with finite sizes, the
analytical solution of the Percu&'evick equation for the hard-
sphere potential was used fgfr).3536

If the acceptor

in the contact reaction case except that in solving the pair
correlation function evolution equation, eq 3.13, we should use
the reflecting boundary condition in eq 2.7 instead of the
radiative boundary condition in eq 3.4 and should include the
unimolecular decay term in the rate equation as in eq 3.11. At
a given time step we solve the partial integro-differential
equation, eq 3.13, by generalizing the finite difference Crank
Nicholson scheme to manipulate the integral term on the right
hand side. p(r,t) so obtained is then used to calculate the
bimolecular rate coefficient from eq 3.12 and in turn the time
rofile of the concentration decay & molecules according
eq 3.11.
In Figure 4, the numerical results of the RDF theory are
compared with those of BlumerManz and Fayeet al. In
Figure 4a the solute molecules are immobile, while in Figure
4b they are mobile with the relative diffusion constanDof=
1.0 x 1078 cm/s. We set the size & molecule equal to that
of the A molecule; that isogg = 0. The values of other
parameters used are given in the figure caption. First, it can
be seen that all three theories predict that the survival probability
decays more rapidly when the acceptacceptor excluded
volume is taken into account regardless of the mobility of the
solute molecules. However, the RDF theory predicts the fastest
decay of the survival probability due to the excluded volume.
For the case depicted in Figure 4a, the numerical result of the
Blumen—Manz theory®2°is hardly distinguishable from that
of Swallenet al’s.?2?2 At short times the latter predicts faster
decay ofR(t), but at long times the trend appears to be reversed.
We can see a similar trend in the results of Dorfman-Fayer
and Swalleret al?? in Figure 4b. It is also interesting to note
that although the difference is small, the excluded volume effect
is more pronounced for static reactant molecules than for the
mobile ones.

Swallen et al. performed Monte Carlo simulations of the
electron transfer reaction occurring in a solid soluffaand in

(0]

The above two theories can be applied to the electron transfera liquid solution?* Their simulation results also show that when

reaction occurring in a solid solution where all the solute
molecules are immobile. However, the formulations can be

the excluded volume is included the survival probability falls
off more rapidly than in the absence of the excluded volume.
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Figure 4. Comparison of the various theories accounting for the excluded volume effect in the long-range reaction. All three theories predict that
the survival probability decays more rapidly when the excluded volume is taken into account in both cases (a) of solid solution and (b) of liquid

solution. The molecular parameters useda@re ogs = 7.2 A, a = 0.9A, ker = 19.27 ns?, andCs = 0.445 M, corresponding t®g = 0.1.D is
set to zero in part a and to 10 107® cn?/s in part b, which givesp = 5.18 ns. Note that we have plott&ft) expf/zs) instead ofR(t) to single
out the decay rate due to the bimolecular reaction.

a b
1.0 ( ) 1.0 ()
D=0 D = 1.0x10%cm?/s
No excluded volume No excluded volume
LR | [ Present theory 0811 e Present theory
———- Blumen-Manz theory —-——-Dorfman-Fayer theory

0.6

0.2 |-

Survival Probability, R(t)exp(t/t,)

0.0 U . “
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0

time, t/tg time, t/1p
Figure 5. Comparison of the various theories whegs = 1.20. Other reaction and motional parameters are the same as in Figure 4.

Moreover, the simulation results indicate a faster decay of the reaction and motional parameters used in the calculations are

survival probability due to the excluded volume effect than that the same as those in Figure 4. Swallral.’s theonyf? is not

predicted by their theory. Because detailed numerical data of applicable wherogg > 0.

their simulation are not available to us, we are not able to make

a direct comparison of the present calculation with their |y concluding Remarks

simulation results. Nevertheless, judging from the fact that the

RDF theory predicts a larger excluded volume effect than We have investigated the excluded volume effect in the

Swallenet al’s theory, we expect that the RDF theory would diffusion-influenced bimolecular reaction of the typet B —

give results in better accordance with the simulation. P. Within the framework of the hierarchical RDF approach,
As the size ofB molecules becomes larger, the excluded the excluded volume between nonreacting like molecules can

volume effect gets more pronounced and the survival probability be taken into account by applying the Kirkwood superposition

decay curve calculated from the RDF theory deviates more from approximation to the three-particle RDF’s. The rate equation

those of other theories. This can be seen from the comparisonin eq 2.2, the rate coefficient expression in eq 2.3, and the kinetic

of Figures 4 and 5. In Figure 5, we sgfs equal to 1.2. Other equation for the nonequilibrium pair correlation function in eq
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2.11 are the general set of equations that needs to be solved to _ (7) Ovchinnikov, A. A.; Timashev, S. F.; Belyy, A. Ainetics of
evaluate the excluded volume effect. For two simple reaction D'ﬁ‘g')orclviﬁg”c#'eg gﬁe:“;"f‘e' *315’5‘3?315:7*0“1’2353‘;r1‘°e: Commack, 1989.
models, the general equations were manlp_ulated to give simpler ©) Moncﬁick, L I\)/Ilagee, 3. L_;' San'1uel, A H. Chem. Phys1957
forms and evaluated by numerical analysis. 26, 935.

We have found that inclusion of the excluded volume renders  (10) wilemski, G.; Fixman, MJ. Chem. Phys1973 58, 4009.
reactant concentrations to decay more rapidly than in the (11) Lee, S.; Karplus, MJ. Chem. Phys1987 86, 1883. ErratumJ.
calculation neglecting it. The physical origin of the excluded Cha”;)- PL?(’:ng?ZK;GingﬁJ Chem. Phvsl87 86. 1904
volume.t.effect can pe attributed to the partllal suppression of (13) Kalr;in,'Y_ H_pph);s_ Stanis SolidinQSleoi K139,
competition among I_|ke _molecules fora reacting partner, which (14) Kotomin, E.; Kuzovkov, VChem. Phys1983 76, 479.
makes the pair distribution between reacting molecules deplete  (15) kuzovkov, V. N.; Kotomin, E. AChem. Phys1983 81, 335:1985
more slowly at small separations. The excluded volume effect 98, 351.
gets more pronounced, as the size of the reactant molecules (16) Kuzovkov, V.; Kotomin, ERep. Prog. Phys1988 51, 1479.
increases and the reactant concentration becomes higher. It (17) Kotomin, E.; Kuzovkov, VRep. Prog. Physl992 55, 2079.
seems that consideration of the excluded volume is essential inllglg)sfa'd'de" Y. B.; Onipko, A. I.; Zozulenko, 1. \Chem. Phys1987,
many experimental situations. (’19) élumen, A.; Manz, JJ. Chem. Physl979 71, 4696.

Comparison of the numerical results of the RDF theory with  (20) Blumen, A.J. Chem. Phys198Q 72, 2632.
those of Blumen and Ma#%2° and Fayeret al21-24 shows (21) Lin, Y.; Dorfman, R. C.; Fayer, M. DJ. Chem. Phys1989 90,
qualitative agreement. However, the RDF theory predicts a 159. _ _
larger excluded volume effect than the other theories, and thegg(zléégwa”e”' S. F.; Weidemaier, K.; Fayer, M. DPhys. Cheml 995
QeV|at|on becomes Iarger'a.s the size .of reactant molecules ’(23) Dorfman, R. C.; Fayer, M. DI. Chem. Phys1992 96, 7410.
increases. In this reSpeCt, itis encouraging to note that a recent (24) Swallen, S. F.; Fayer, M. OJ. Chem. Phys1995 103 8864.
computer simulation study by Swallenal?? predicted a larger (25) Molski, A.; Keizer, JJ. Chem. Phys199§ 104, 3567.
excluded volume effect than their theory can explain. (26) Jung, Y.; Lee, SChem. Phys. Letfl994 231, 429.

(27) Kim, J.; Jung, Y.; Jeon, J.; Shin, K. J.; Lee,J5.Chem. Phys.
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